5,740 research outputs found

    A Solid State Pulsed Coagulating Diathermy Instrument

    Get PDF
    Solid state pulsed coagulating diathermy instrumen

    DSN G/T(sub op) and telecommunications system performance

    Get PDF
    Provided here is an intersystem comparison of present and evolving Deep Space Network (DSN) microwave receiving systems. Comparisons of the receiving systems are based on the widely used G/T sub op figure of merit, which is defined as antenna gain divided by operating system noise temperature. In 10 years, it is expected that the DSN 32 GHz microwave receiving system will improve the G/T sub op performance over the current 8.4 GHz system by 8.3 dB. To compare future telecommunications system end-to-end performance, both the receiving systems' G/T sub op and spacecraft transmit parameters are used. Improving the 32 GHz spacecraft transmitter system is shown to increase the end-to-end telecommunications system performance an additional 3.2 dB, for a net improvement of 11.5 dB. These values are without a planet in the field of view (FOV). A Saturn mission is used for an example calculation to indicate the degradation in performance with a planet in the field of view

    Matters in Abatement

    Get PDF

    The Unavailability Requirement

    Get PDF

    How \u3cem\u3eQui Tam\u3c/em\u3e Actions Could Fight Public Corruption

    Get PDF
    This Note argues that public corruption at the state and local levels is a serious problem throughout the United States. Because public corruption decreases confidence in the democratic system at all levels of government, a strong response is necessary. Due to difficulties inherent in the deterrence, detection, and prosecution of state and local corruption, innovative methods to respond to this problem are needed. The author argues that amending the federal criminal statutes most commonly used to prosecute state and local public corruption, to allow a private citizen to bring a qui tam civil action against the public official for violations of those criminal statutes, would contribute substantially to the deterrence, detection, and prosecution of public corruption

    The Unavailability Requirement

    Get PDF

    Fluorescence microscopy: Established and emerging methods, experimental strategies, and applications in immunology

    Full text link
    Cutting-edge biophysical technologies including total internal reflection fluorescence microscopy, single molecule fluorescence, single channel opening events, fluorescence resonance energy transfer, high-speed exposures, two-photon imaging, fluorescence lifetime imaging, and other tools are becoming increasingly important in immunology as they link molecular events to cellular physiology, a key goal of modern immunology. The primary concern in all forms of microscopy is the generation of contrast; for fluorescence microscopy contrast can be thought of as the difference in intensity between the cell and background, the signal-to-noise ratio. High information-content images can be formed by enhancing the signal, suppressing the noise, or both. As improved tools, such as ICCD and EMCCD cameras, become available for fluorescence imaging in molecular and cellular immunology, it is important to optimize other aspects of the imaging system. Numerous practical strategies to enhance fluorescence microscopy experiments are reviewed. The use of instrumentation such as light traps, cameras, objectives, improved fluorescent labels, and image filtration routines applicable to low light level experiments are discussed. New methodologies providing resolution well beyond that given by the Rayleigh criterion are outlined. Ongoing and future developments in fluorescence microscopy instrumentation and technique are reviewed. This review is intended to address situations where the signal is weak, which is important for emerging techniques stressing super-resolution or live cell dynamics, but is less important for conventional applications such as indirect immunofluorescence. This review provides a broad integrative discussion of fluorescence microscopy with selected applications in immunology. Microsc. Res. Tech., 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56150/1/20455_ftp.pd

    Flood hazard hydrology: interdisciplinary geospatial preparedness and policy

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Floods rank as the deadliest and most frequently occurring natural hazard worldwide, and in 2013 floods in the United States ranked second only to wind storms in accounting for loss of life and damage to property. While flood disasters remain difficult to accurately predict, more precise forecasts and better understanding of the frequency, magnitude and timing of floods can help reduce the loss of life and costs associated with the impact of flood events. There is a common perception that 1) local-to-national-level decision makers do not have accurate, reliable and actionable data and knowledge they need in order to make informed flood-related decisions, and 2) because of science--policy disconnects, critical flood and scientific analyses and insights are failing to influence policymakers in national water resource and flood-related decisions that have significant local impact. This dissertation explores these perceived information gaps and disconnects, and seeks to answer the question of whether flood data can be accurately generated, transformed into useful actionable knowledge for local flood event decision makers, and then effectively communicated to influence policy. Utilizing an interdisciplinary mixed-methods research design approach, this thesis develops a methodological framework and interpretative lens for each of three distinct stages of flood-related information interaction: 1) data generation—using machine learning to estimate streamflow flood data for forecasting and response; 2) knowledge development and sharing—creating a geoanalytic visualization decision support system for flood events; and 3) knowledge actualization—using heuristic toolsets for translating scientific knowledge into policy action. Each stage is elaborated on in three distinct research papers, incorporated as chapters in this dissertation, that focus on developing practical data and methodologies that are useful to scientists, local flood event decision makers, and policymakers. Data and analytical results of this research indicate that, if certain conditions are met, it is possible to provide local decision makers and policy makers with the useful actionable knowledge they need to make timely and informed decisions

    Matters in Abatement

    Get PDF
    • …
    corecore